منابع مشابه
Quadratic bi-level programming problems: a fuzzy goal programming approach
This paper presents a fuzzy goal programming (FGP) methodology for solving bi-level quadratic programming (BLQP) problems. In the FGP model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them, and suitable membership function is defined for each objectives, and also the membership functions for vec...
متن کاملCanonical Duality Theory and Solutions to Constrained Nonconvex Quadratic Programming
This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points ...
متن کاملquadratic bi-level programming problems: a fuzzy goal programming approach
this paper presents a fuzzy goal programming (fgp) methodology for solving bi-level quadratic programming (blqp) problems. in the fgp model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them, and suitable membership function is defined for each objectives, and also the membership functions for vec...
متن کاملMultiparametric Linear and Quadratic Programming
In this work we present an algorithm for the solution of multiparametric linear and quadratic programming problems.With linear constraints and linear or convex quadratic objective functions, the optimal solution of these optimization problems is given by a conditional piecewise linear function of the varying parameters. This function results from first-order estimations of the analytical nonlin...
متن کاملP , Sequential Quadratic Constrained Quadratic Programming
We follow the popular approach for unconstrained minimization, i.e. we develop a local quadratic model at a current approximate minimizer in conjunction with a trust region. We then minimize this local model in order to nd the next approximate minimizer. Asymptot-ically, nding the local minimizer of the quadratic model is equivalent to applying Newton's method to the stationarity condition. For...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin des Sciences Mathématiques
سال: 2020
ISSN: 0007-4497
DOI: 10.1016/j.bulsci.2020.102841